ARGE EHS N01/40 Einhausung Schwamendingen

Betonkolloquium 2022

Daniel Hardegger / Adrian Linder

19.05.2022 / 31.05.2022

Struktur und Arbeitsgemeinschaft

Bauherr (Auftraggeber): **ASTRA**

Schweizerische Eidgenossenschaft

Bundesamt für Strassen ASTRA

Bauunternehmung (Auftragnehmer) *Baut*

ARGE EHS

Projektverfasser und Bauleitung (Auftragnehmer)

Plant kontrolliert

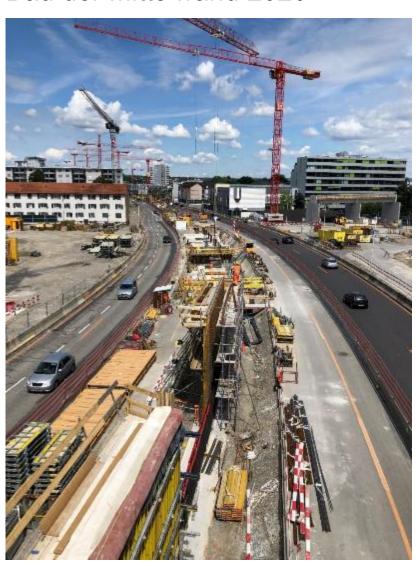
INGE K12plus

Spezielle Herausforderungen für die ARGE an der EHS

Logistik und Sicherheit

- ->Grossbaustelle an Haupttransitachse im städtischen Bereich
- ->Verkehrsführung immer 2x2 Spuren
- ->2020 Inselbaustelle: Mittelstreifen

Bautechnische Komplexität


- ->Tramtunnel unterhalb Autobahn
- ->Fertigbetonträger als Deckenelemente

Chancen und Risiken

-> 23 Zwischentermine (Malussystem; CHF 50'000/Tag)

Logistik und SicherheitBau der Mittelwand 2020

Herausforderung

Ausführung Mittelwand unter laufender Verkehrsführung -> Inselbaustelle (LKW Fahrten exkl. Werkleitungen, Kofferbau und Belagsbau)

Ausgangslage

Beschreibung	LKW-Fahrten
Pfahlaushub	570
Pfahlbeton	890
Pfahlbewehrung	180
Aushub	500
Fundamentbeton	250
Wandbeton	280
Bewehrung Wand	120
Logistik	150
Total	≈ 2'950

Logistik und Sicherheit

Bau der Mittelwand 2020

Lösung

- UN-Variante: Bentonitpfähle
- ->Minus 900 LKW-Fahrten für Pfahlbeton
- Ausfahrt mittels Blockfahrzeuge
- ->2 Blockfahrzeuge unter Dauereinsatz
- Verkehrssicherheitspersonal mit Funk
- ->Koordination und Überwachung

Fazit

- Keine Unfälle auf Baustelle und im Individualverkehr!
- Keine Bauverzögerung!

Logistik und Sicherheit Bau der Mittelwand 2020

Bautechnische Komplexität: Fertigbetonträger (FBT)

Bautechnische Komplexität: Fertigbetonträger (FBT)

Deckenelemente als Einfeldträger, Abschnitt Schörli

- 178 Einzelanfertigungen
- 30 m lang, 2.5 m breit, 1.5 m hoch
- Planung und Ausführung mittels BIM
- Parallelproduktion Wand und FBT
- Sehr hohe Anforderung an Genauigkeit und Toleranz
 - → Träger und Wand müssen auf +/- 1 cm genau sein

Bautechnische Komplexität: Fertigbetonträger (FBT)

Vorproduktion in Tafers, Fribourg

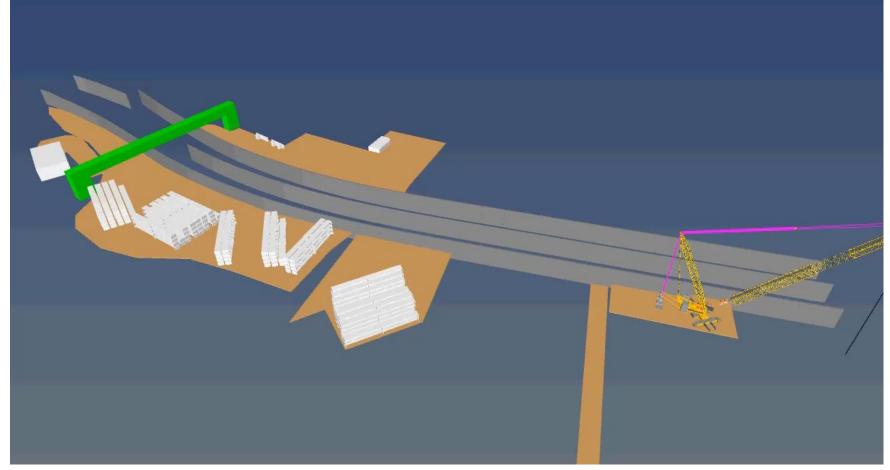
- 7.5 to Bewehrung / Träger
- Ca. 24 m3 Beton / Träger
- ≈ 65 to schwer

Bautechnische Komplexität: Fertigbetonträger (FBT)

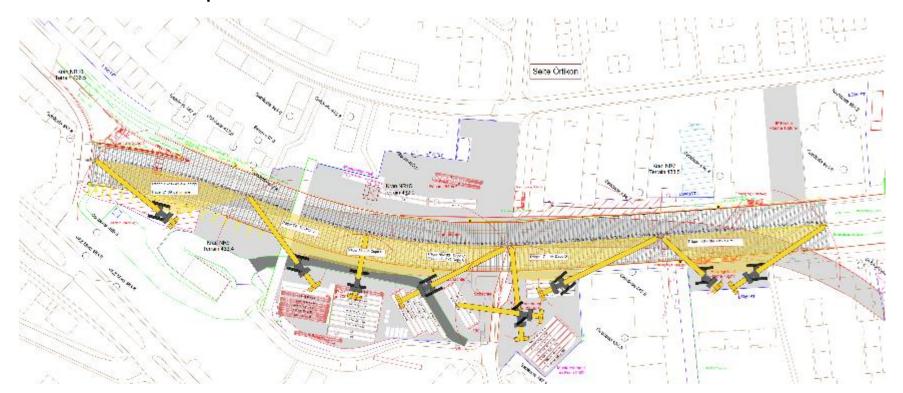
Transport und Deponage

- Sondertransport von Tafers, Fr nach Schwamendingen, ZH
- Diverse Autobahnbrücken können aufgrund des Gewichts nicht befahren werden.

Bautechnische Komplexität: Fertigbetonträger (FBT) Deponage


- 120 Träger während 2021 und 2022 angeliefert und vor Ort zwischengelagert
- 58 Träger just-in-time
- Versetzen während ca. 38 Nächten im Jahr 2023

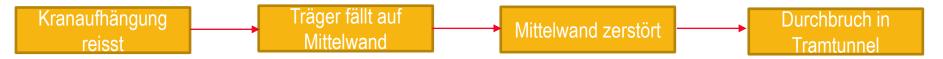
Bautechnische Komplexität: Fertigbetonträger (FBT)


Trägermontage April/Mai 2023

- Versetzen während Nachtarbeit (20:30 05:00)
- Totalsperrung der Autobahn und Einstellung Trambetrieb (Busersatz)

Bautechnische Komplexität: Fertigbetonträger (FBT)

Versetzkonzept Abschnitt Schörli


<u>Unternehmervariante</u>

- Hohe Versetzleistung (bis zu 10 Träger/Nacht)
- Keine nächtliche Montage und Demontage von Kran auf Autobahn
- Träger werden teilweise direkt von Depot versetzt

Chancen und Risiken

Kausalereignis Versetzen Fertigbetonträger

Ereignis

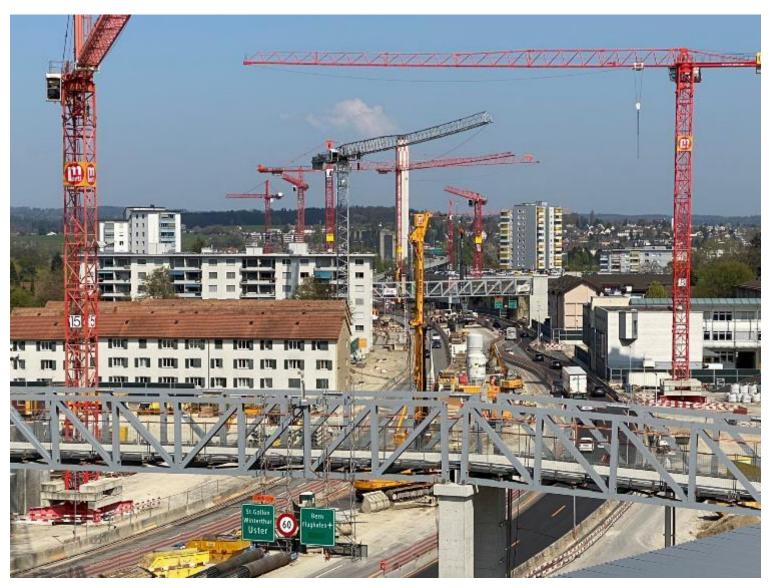
Auswirkungen

Enormer Sachschaden

Bauverzögerung

Malussystem

Konsequenz / Prävention


Totalsperrung
Autobahn

Einstellung Trambetrieb

Minutiöse Planung und AVOR

Risikoabwägung ->Versicherung

Fragen?

